Archivos Mensuales: febrero 2011

Reproducción celular

Estándar

Dentro de los múltiples procesos que tiene la célula en su interior, la reproducción le permite regenerarse, a partir de una célula “madre” se originan dos células proceso conocido como la mitosis y que permite regenerar tejidos, nuestro crecimiento corporal o simplemente poder reemplazar día a día todas aquellas células que se van muriendo y hay algunas celular especializadas (las sexuales) que permiten un proceso un poco mas complejo pues a partir de una célula se originas cuatro células en un proceso conocido como la meiosis. Como ves es un proceso complejo, pero que resulta imprescindible para nuestro organismo o para cualquier otro ser vivo. ES gracias a este proceso que la célula puede sobrevivir en el tiempo trasmitiendo sus características a nuevas generaciones, así que veamos en detalle este interesante proceso y comprendamos como es que sucede.

Aproximación hacia el concepto de reproducción celular

“La división celular es una parte muy importante del ciclo celular en la que una célula inicial (llamada "madre") se divide para formar células hijas. Gracias a la división celular se produce el crecimiento de los organismos pluricelulares con el crecimiento de los Tejidos (biología) y la reproducción vegetativa en seres unicelulares.

Los seres pluricelulares reemplazan su dotación celular gracias a la división celular y suele estar asociada con la diferenciación celular. En algunos animales la división celular se detiene en algún momento y las células acaban envejeciendo. Las células senescentes se deterioran y mueren debido al envejecimiento del cuerpo. Las células dejan de dividirse porque los telómeros se vuelven cada vez más cortos en cada división y no pueden proteger a los cromosomas como tal”. (1)

“La replicación no puede tener lugar si no está presente una secuencia de ADN particular, llamada origen de la replicación. Este origen de replicación es especifico de la especie: las enzimas de una bacteria no encontrarán nunca un origen de replicación de levadura o de hombre  Cuando la célula alcanza aproximadamente el doble de su tamaño originario, y los cromosomas están separados, ésta se invagina y se forma una nueva pared celular, que separa las dos nuevas células y a sus duplicados cromosómicos: se trata de la división por escisión, o corte en dos células hijas de tallas idénticas y conteniendo los mismos elementos estructurales y el mismo equipamiento cromosómico.

En los eucariotes, (donde el equipamiento cromosómico es complejo), el proceso o ciclo celular que asegura esta repartición equitativa de los cromosomas, mantiene una secuencia circular que incluye la mitosis, seguida por la citocinesis y, entre ésta y aquella, un período llamado interfase. Durante la interfase, la célula, se suceden los siguientes pasos:

(a) (que comienza recién ocurrida la citocinesis del ciclo anterior) intensifica su actividad bioquímica y sintetiza ex-novo muchas de sus estructuras citoplasmática; se replican las mitocondrias o cloroplastos, en su caso, que lo hacen a partir de su propio ADN;

(b) luego, sintetiza histonas y otras proteínas asociadas al ADN, proceso clave de la replicación; y

(c) antes de la mitosis, los cordones filamentosos, resultantes de la duplicación de los cromosomas ocurrida en la etapa anterior, se enroscan y compactan y se completa la duplicación de los centríolos.

Sobreviene el momento de la mitosis, proceso que tiene la función de dirigir a los cromosomas de modo tal que cada nueva célula obtenga un complemento completo, es decir, que cada una tenga la misma cantidad de cromosomas que la célula madre (dotación diploide). La mitosis se desarrolla en todas las células de la estirpe directa y en las que siguen la línea original durante su crecimiento. Se lleva a cabo en cuatro fases principales que culmina el ciclo con la citocinesis que es la división del citoplasma. La citocinesis comienza durante la telofase de la mitosis y divide la célula en dos partes iguales, coincidiendo con la línea media del huso (ver gráfico). Difiere sensiblemente en los casos de células vegetales y animales: en estas últimas la citocinesis resulta de las constricciones de la membrana celular entre los dos núcleos; en aquellas el citoplasma se divide por la confluencia de vesículas para formar la placa celular, dentro de la cual después se formará la pared celular.” (2)

La mitosis

Como se puede ver la mitosis origina dos nuevas células a partir de una célula “madre”. Este proceso de división de la célula comprende dos etapas: en la primera etapa el núcleo se divide (cariocinesis o m itosis)  y la otra etapa el citoplasma se divide o citocinesis. Hay que tener en cuenta que la división del núcleo es exacta en donde en forma equitativa se reparte el material genetico, mientras  que en la citocinesis a veces no se da esa precisión, en otras palabras el reparto de orgánulos del citoplasma y el tamaño de las células puede tener variantes o no ser equitativo; (3)

A. La mitosis comprende varias etapas:

1. INTERFASE:

Es la etapa previa a la mitosis donde la célula se prepara para dividirse, en esta, los centríolo y la cromatina se duplican, aparecen los cromosomas los cuales se observan dobles.
El primer proceso clave para que se de la división nuclear es que todas las cadenas de ADN se dupliquen (replicación del ADN); esto se da inmediatamente antes de que comience la división, en un período del ciclo celular llamado interfase, que es aquel momento de la vida celular en que ésta no se está dividiendo.
Tras la replicación tendremos dos juegos de cadenas de ADN, por lo que la mitosis consistirá en separar esas cadenas y llevarlas a las células hijas. Para conseguir esto se da otro proceso crucial que es la conversión de la cromatina en cromosomas.

***

2. PROFASE    

Es la etapa que inicia la mitosis, en ella ocurren los siguientes eventos:
Comienza con la conversión de la cromatina en cromosomas  por un proceso de espiralización de las cadenas (igual que si tenemos un alambre largo y lo convertimos en un muelle), seguiremos teniendo lo mismo, pero de forma diferente: las dos cadenas que son completamente idénticas (ya que una se ha formado por replicación de la otra) se espiralizan juntas originando las cromátidas del cromosoma.
Se duplican los centríolos
La membrana nuclear desaparece. Cuando ya ha desaparecido la membrana nuclear, los centríolos migran hacia los polos (extremos) de la célula, apareciendo entre los dos pares de centríolos una serie de fibras de proteína dispuestas de polo a polo que reciben el nombre en conjunto de huso acromático .
Los cromosomas ya formados se mueven y se unen a una fibra del huso por su centrómero (un sólo cromosoma por fibra) ), de manera que las cromátidas migran hacia los polos de la célula. En la célula vegetal no existen centríolos y a veces no se ve el huso acromático.

En ella se hacen patentes un cierto número de filamentos dobles: los cromosomas.Cada cromosoma constituido por dos cromátidas, que se mantienen unidas por un estrangulamiento que es el centrómero. Cada cromátida corresponde a una larga cadena de ADN. Al final de la profase ha desaparecido la membrana nuclear y el nucléolo. muy condensada

3.METAFASE

Se inicia con la aparición del huso, dónde se insertan los cromosomas y se van desplazando hasta situarse en el ecuador del huso, formando la placa metafásica o ecuatorial. Es una fase breve en la que todos los cromosomas dobles se encuentran situados en el ecuador (parte media) de la célula, formando una figura muy característica llamada placa ecuatorial. Tras colocarse aquí comienza la siguiente fase.

***

4 ANAFASE     En ella el centrómero se divide y cada cromosoma se separa en sus dos cromátidas. (4) Los centrómeros emigran a lo largo de las fibras del huso en direcciones opuestas, arrastrando cada uno en su desplazamiento a una cromátida. La anafase constituye la fase crucial de la mitosis, porque en ella se realiza la distribución de las dos copias de la información genética original. Las cromátidas se separan por el centrómero y se desplazan hacia los centríolos, al tiempo que van desapareciendo las fibras del huso. En este momento ya se ha repartido el material hereditario (las cadenas de ADN) de forma idéntica en dos partes. Ahora las cromátidas se llaman cromosomas. La anafase es la fase crucial de la mitosis, por que en ella se realiza la distribución de las dos copias de la información genética original.

5. TELOFASE     Los dos grupos de cromátidas, comienzan a descondensarse, se reconstruye la membrana nuclear, alrededor de cada conjunto cromosómico, lo cual definirá los nuevos núcleos hijos. A continuación tiene lugar la división del citoplasma. Es una profase al revés, se reconstruyen las membranas nucleares y reaparecen los nucléolos de las células hija. Los cromosomas se desorganizan para formar de nuevo la molécula de cromatina. Por último, la membrana celular empieza a separar los dos núcleos nuevos, finalizando el proceso de mitosis. En muchas células la mitosis suele ir acompañada de la citocinesis o separación de los citoplasmas de las células hija. (5)

B. CITOCINESIS

Es la segunda etapa acompañante de la mitosis, en esta, el citoplasma se divide para formar dos células hijas diploides idénticas con la repartición aproximada de los orgánulos celulares. En las células animales se hace por estrangulación, desde fuera hacia adentro, y en las vegetales se hace por crecimiento de la pared celular desde dentro hacia afuera.

No es igual en las células animales y vegetales debido a las características fisiológicas de cada una. La citocinesis puede ser afectada por la cariocinesis (división nuclear), que es previa la división del citoplasma. Por ejemplo en casos en que se somete a una
célula a cafeína no se produce citocinesis, lo que hace que la célula experimente cariocinesis y que el resultado sea una célula polinucleada. Por curiosidad también puede haber citocinesis sin cariocinesis, al someterse la célula a bromuro de etilo, o citocinesis en células anucleadas.(5) Una vez finalizada la mitosis y la citocinesis, las dos células hijas que se forman entran en interfase, durante la cual se prepara para su próxima mitosis.

Citocinesis en células animales:

Las células animales experimentan una división de su citoplasma mediante un proceso de estrangulación y ello se acentúa tras la telofase. Todo comienza antes de la profase (durante los preparativos de la célula para su división: interfase) con la aparición del anillo preprofásico formado por microtúbulos que se sitúa en la mitad del huso mitótico (el lugar donde los cromosomas se dividen en dos) y que está unido a la membrana. La razón de la localización del huso en ese lugar es que ahí se encuentra un surco de miosina y actina. Tras la retirada de los cromosomas, en el centro, el anillo empieza a estrangular la célula por la mitad y al final consigue su división en dos, cayendo en las células hijas más o menos igual cantidad de citoplasma. Los restos del anillo preprofásico quedan en las células hijas y se utilizan para la formación del citoesqueleto de las células hijas. (6)

Citocinesis en células vegetales:

Las células vegetales se caracterizan por una citocinesis basada en la tabicación, ya que la pared celular no permite la estrangulación. A finales de la telofase se forma el fragmoplasto, vesículas de Golgi asociadas a microtúbulos polares, esta es el resultado de la fusión de los microtúbulos residuos de la mitosis y que se fusionan con los componentes de las vesículas formando una nueva pared celular. La división en un principio no es total sino que solo se divide los citoplasmas y están interconectados por plasmodesmos, unos poros de comunicación

Recordemos brevemente que el anterior proceso de la mitosis permite la regeneración, celular, nuestro crecimiento etc., es propio de todas  las células, con excepción de los gametos sexuales, es decir aquellas sexuales que permiten que un ser vivo se reproduzca, para estos organismos incluidos los seres humanos, esta división celular sobre un proceso doble, que denominamos meiosis, veámoslo en detalle:

LA MEIOSIS

Para comprender la meiosis debemos examinar los cromosomas. Cada organismo tiene un número de cromosomas característico de su especie particular. Un mosquito tiene seis cromosomas en cada célula somática; el ciruelo, cuarenta y ocho; el ser humano, cuarenta y seis; la papa, cuarenta y seis; el gato, treinta y ocho. Sin embargo en cada una de estas especies las células sexuales o gametos, tienen exactamente la mitad del número de cromosomas que caracteriza a las células somáticas del organismo. El número de cromosomas de los gametos se conoce como haploide (“conjunto simple”) y el número en las células somáticas, como número diploide (“conjunto doble”). Las células que tienen más de dos conjuntos de cromosomas se conocen como poliploides (“muchos conjuntos”).

Para simplificar, el número haploide se designa como n y al diploide 2n. En los seres humanos por ejemplo n = 23 y por tanto 2n = 46.

La meiosis ocurre en diferentes momentos del ciclo de vida de diferentes organismos. En muchos protistas y hongos ocurre inmediatamente después de la fusión de las células que se aparean. Las células son haploides y la meiosis restablece el número haploide después de la fecundación. (7)

Fases de la meiosis

Profase I

La replicación del ADN precede el comienzo de la meiosis I. Durante la profase I, los cromosomas homólogos se aparean y forman sinapsis, un paso que es único a la  meiosis. Los cromosomas apareados se llaman bivalentes, y la formación de quiasmas causada  por recombinación genética se vuelve aparente. La condensación de los cromosomas permite que estos sean vistos en el microscopio. Note que el bivalente tiene dos cromosomas y cuatro cromátidas, con un cromosoma de cada padre. (8)

Prometafase I

La membrana nuclear desaparece.  Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse.

Metafase I

Bivalentes, cada uno compuesto de dos cromosomas (cuatro cromatidas) se alinean en el plato de metafase. La orientación es al azar, con cada homólogo paterno en un lado. Esto quiere decir que  hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma.

Anafase I

Los quiasmas se separan. Los cromosomas, cada uno con dos cromátidas, se mueven a polos opuestos. Cada una de las células hijas ahora es haploide (23 cromosomas), pero cada cromosoma tiene dos cromátidas.

Telofase I

Las envolturas nucleares se pueden reformar, o la célula puede comenzar rápidamente  meiosis II.

Citocinesis

Análoga a la mitosis dónde dos células hijas completas se forman. 

Diferencias entre mitosis y meiosis

Ambos procesos presentan grandes similitudes pero tambien diferencias importantes. en el caso de la mitosis.- es la division de una celula somatica (corporal o no sexual) en la que se obtiene como resultado 2 celulas hijas que posean las mismas funciones y el mismo material genetico que la celula original, por eso se dice que son identicas a la celula progenitora en la meiosis.- es la division celular en la que se forman los gametos o celulas sexuales, al concluir esta division (de hecho son 2 divisiones, la primera es una meiosis verdadera y la segunda es una pseudomitosis), son producidas 4 celulas hijas que tienen la mitad del material genetico de la celula progenitora, es decir 1 cromosoma de cada par.
Como datos curiosos cabe mencionar que la mitosis es comun en todos los organismos vivientes (en bacterias la llamamos fision binaria, por la ausencia de los husos acromaticoas, pero no importa mucho), todo organismo viviente sea unicelular o multicelular posee celulas que realizan mitosis. la meiosis es unica de los organismos multicelulares. (las bacterias no hacen meiosis y esta se realiza solo a partir de los protistas pluricelulares) (9)


Actividades:

1. Haz click sobre la siguiente animación para que puedas ver en forma gráfica cómo es el proceso de la mitosis

http://www.cellsalive.com/mitosis.htm

2. Comprueba que haz aprendido el proceso de la meiosis, para ello realiza el siguiente juego que te permitirá tener claridad en el tema:

http://www.iibce.edu.uy/uas/biomolec/meiosis/appmeiosis.htm

3. Para que repases los contenidos vistos en esta entrada, visita el siguiente enlace:

http://www.selectividad.tv/full_screen.php?codigo=B_1_3_3

4. Si queires ver graficamente este proceso te invito a ver las siguientes animaciónes:

http://www.santillana.cl/bio2/biologia2u1a2.htm

http://www.johnkyrk.com/mitosis.esp.swf

http://www.johnkyrk.com/meiosis.esp.swf

5. Ahora complementa con los sigueintes videos:

video

Evaluación

Una vez realizadas las actividades que se te han propuesto comprueba tu aprendizaje mediante la realización de las siguientes actividades evaluativas:

http://dl.dropbox.com/u/20611524/crucigrama_divisioncelular.htm

Fuentes:

(1) http://es.wikipedia.org/wiki/Divisi%C3%B3n_celular

(2) http://www.prodiversitas.bioetica.org/nota66-1.htm

(3) http://www.ucm.es/info/genetica/grupod/mitosis/mitosis.htm

(4) http://www.juntadeandalucia.es/averroes/recursos_informaticos/concurso1998/accesit6/mitosis.html

(5) http://etapasdemitosis.galeon.com/cvitae1989014.html

(6) www.colegiomaravillas.com/BIO/BACH/…/243citocinesis.pdf

(7) http://www.memo.com.co/fenonino/aprenda/biologia/biolog5.html

(8) http://www.biologia.arizona.edu/cell/tutor/meiosis/page3.html 

(9) http://es.answers.yahoo.com/question/index?qid=20080322151902AAY0x0f

Anuncios

Estructura celular

Estándar

Como vimos en la anterior entrada la célula es la mínima unidad  que constituye a todo ser vivo,para poder cumplir con todas sus funciones, la célula cuenta con diversas estructuras en su interior que cumplen diversas actividades, entre ellas tenemos: la membrana celular, el citoplasma y el núcleo. Así que veamos cada una de estas estructuras en detalle, además de todos los organelos contenidos en cada de estas partes-

1- La membrana celular o membrana plasmática

La definición más simple de membrana celular es referirse a ella como el medio que separa la parte interna de la célula (citoplasma) de la parte externa (plasma en el caso de las membranas plasmáticas), que son medio muy acuosos y que además es crucial para mantener a la célula. Por otra parte estas propiedades también rigen para las membranas internas de los organelas presentes en el citoplasma, que permiten a la célula desarrollar muchas de sus actividades bioquímicas en forma simultánea, que de otro modo serian incompatibles. Sin embargo las funciones de la membrana son mucho más complejas, ya que además de participar en el transporte activo de moléculas y iones en ambos sentidos mediante canales y bombas, lo que permite que determinadas sustancias entren y salgan de la célula en forma selectiva, envía y recibe mensajes químicos y eléctricos incluyendo señales para sus divisiones y síntesis de proteínas, además contiene otras proteínas como receptores y enzimas que también cumplen funciones vitales para la célula. Da entonces la importancia de la membrana resulta curioso que no se conozca en detalle sus estructuras moleculares. (1)

Composición química

La composición química de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentren, pero se puede estudiar de forma general. La membrana plasmática está compuesta por una doble capa de fosfolípidos, por proteínas unidas no covalentemente a esa bicapa, y glúcidos unidos covalentemente a los lípidos o a las proteínas. Las moléculas más numerosas son las de lípidos, ya que se calcula que por cada 50 lípidos hay una proteína. Sin embargo, las proteínas, debido a su mayor tamaño, representan aproximadamente el 50% de la masa de la membrana.

Lípidos

El 98% de los lípidos presentes en las membranas celulares son anfipáticos, es decir que presentan un extremo hidrófilo (que tiene afinidad e interacciona con el agua) y un extremo hidrofóbico (que repele el agua). Los más abundantes son los fosfoglicéridos (fosfolípidos) y los esfingolípidos, que se encuentran en todas las células; le siguen los glucolípidos, así como esteroides (sobre todo colesterol). Estos últimos no existen o son escasos en las membranas plasmáticas de las células procariotas. Existen también grasas neutras, que son lípidos no anfipáticos, pero sólo representan un 2% del total de lípidos de membrana.

Proteínas

El porcentaje de proteínas oscila entre un 20% en la vaina de mielina de las neuronas y un 70% en la membrana interna mitocondrial;[1] el 80% son intrínsecas, mientras que el 20% restantes son extrínsecas. Las proteínas son responsables de las funciones dinámicas de la membrana, por lo que cada membrana tienen una dotación muy específica de proteínas; las membranas intracelulares tienen una elevada proporción de proteínas debido al elevado número de actividades enzimáticas que albergan. En la membrana las proteínas desempeña diversas funciones: transportadoras, conectoras (conectan la membrana con la matriz extracelular o con el interior), receptoras (encargadas del reconocimiento celular y adhesión) y enzimas. Según su grado de asociación a la membrana se clasifican en:

 Integrales o Intrínsecas: Presentan regiones hidrófobas, por las que se pueden asociar al interior de la membrana y regiones hidrófilas que se sitúan hacia el exterior, por consiguiente, son anfipáticas. Solo se pueden separar de la bicapa si esta es destruida (por ejemplo con un detergente neutro). Algunas de éstas, presentan carbohidratos unidos a ellas covalentemente (glucoproteínas).

Periféricas o Extrínsecas: No presentan regiones hidrófobas, así pues, no pueden entrar al interior de la membrana. Están en la cara interna de esta (en el interior celular). Se separan y unen a esta con facilidad por enlaces de tipo iónico.

Glúcidos

Están en la membrana unidos covalentemente a las proteínas o a los lípidos. Pueden ser polisacáridos u oligosacáridos. Se encuentran en el exterior de la membrana formando el glicocalix. Representan el 8% del peso seco de la membrana plasmática. Sus funciones principales son dar soporte a la membrana y el reconocimiento celular (colaboran en la identificación de las señales químicas de la célula). (2)

[slideboom id=129047&w=425&h=370]

– La pared celular

En algunos organismos como las plantas,los hongos  y las bacterias además de membrana celular existe una capa muy fuerte llamada Pared celular, la cual tiene diversas funciones. La pared celular protege los contenidos de la célula, da rigidez a la estructura celular, provee un medio poroso para la circulación y distribución de agua, minerales, y otras pequeñas moléculas nutrientes; además de contener moléculas especializadas que regulan el crecimiento de la planta y la protegen de las enfermedades.

La substancia que constituye la pared celular de las plantas es un carbohidrato: la celulosa, formado por miles de moléculas de glucosa.

2- El núcleo celular

Es fundamental aclarar que existen células que tienen un núcleo bien definido y separado del citoplasma, a través de una membrana llamada membrana doble nuclear o carioteca. A estas células con núcleo verdadero, se les denomina células eucariontes.

Hay otras células -en las bacterias y en ciertas algas unicelulares- que no tienen un núcleo definido ni determinado por una membrana. Esto indica que los componentes nucleares están mezclados con el citoplasma. Este tipo de células se denominan procariontes.

En la célula eucarionte el núcleo se caracteriza por:

– Ser voluminoso.

– Ocupar una posición central en la célula.

– Estar delimitado por la membrana carioteca. Ésta presenta poros definidos, que permiten el intercambio de moléculas entre el núcleo y el citoplasma.(3)

Es el componente más notorio y evidente cuando se observa la célula al microscopio es el núcleo.

Es el centro de control celular y encierra la información genética que le otorga a cada célula las características morfológicas, fisiológicas y bioquímicas que le son propias. Es imprescindible para la sobrevida de la célula.

Características del núcleo interfásico

En los períodos no divisionales el núcleo no presenta en general cromosomas visibles y por eso se lo denomina núcleo interfásico.

Ø ESTRUCTURA

En todas las células se encuentra un núcleo con características morfológicas similares y constituido por una membrana nuclear, jugo nuclear, cromatina o cromosomas y nucléolo, hablándose en estos casos de núcleos típicos.

(Nucleoide: no existe núcleo como una estructura definida, el material nuclear se halla disperso en gránulos por el citoplasma no existe carioteca que limite y encierre lo componentes nucleares)

Ø FORMA

La forma del núcleo puede ser regular o irregular

Regular: esférica, ovoide, cúbica, etc. Coincidiendo con la forma de la célula. Es decir que la forma del núcleo coincide generalmente con la de la célula.

Irregular: como en los glóbulos blancos polimorfonucleares, su morfología polilobulada y en forma de herradura es la que le da aspecto irregular al núcleo.

Ø TAMAÑO

Su tamaño es variable pero en general guarda relación con la célula. Podemos referirnos a él en términos absolutos en cuyo caso daremos una medida en micrones. O hacerlo en forma relativa y referirlo a la relación núcleo citoplasma.

Ø POSICION

La posición del núcleo varía según el tipo de célula considerada y según la materia acumulada en la célula.

Cada célula tiene el núcleo en una posición característica en casi todas las células animales es céntrico, en algunas como las adiposas y las de las fibras musculares estriadas esqueléticas es excéntrico, en las epiteliales se ubica en la zona basal.  (4)

Dentro del núcleo se encuentra una sustancia acuosa llamada carioplasma, en la que se encuentran suspendidas los cromosomas (cuya forma es la de filamentos). Los cromosomas están compuestos por DNA y proteínas. Mientras la célula no se encuentra en proceso de división las hebras que conforman los cromosomas forman una especie de red irregular de fibras a la que llamamos cromatina.

También es posible localizar dentro del núcleo otro cuerpo conocido como nucleolo. La forma del nucleolo también semeja a la de una esfera, pero su forma puede variar. Además podría desaparecer temporalmente del núcleo, cuando la célula está a punto de dividirse. En otros casos puede observarse la presencia de más de un nucleolo en el mismo núcleo.

Parece que el nucleolo tiene un papel indispensable en la división de la célula, ya que si se destruye el nucleolo no se produce la división de la célula.

Se han realizado importantes experimentos para determinar el comportamiento del núcleo y del nucleolo en la separación celular y los resultados tienden a demostrar lo expresado aquí. Uno de los científicos que han realizado estos trabajos es Hämmerling quien experimentó con varios grupos de amibas. A un grupo las perforo varias veces sin tocar el núcleo. Por otra parte destruyó el núcleo del otro grupos de amibas. Hecho esto, las amibas que habían sido perforadas sin destruir el núcleo siguieron creciendo y reproduciendo. Por otro lado, aquellas a las que se les destruyó el núcleo, siguieron viviendo por algún tiempo pero no pudieron crecer ni reproducirse. (5)

3- El citoplasma

Es la parte de la célula comprendida entre la membrana celular y el núcleo. Químicamente el citoplasma está formado por agua, y en él se encuentran en suspensión, o disueltas, distintas sustancias como proteínas, enzimas, líquidos, hidratos de carbono, sales minerales, etcétera.  y unos pequños organelos llamados asi porque tienen forma propia y cumplen con una funcion determinada.

Funciones del citoplasma

Nutritiva. Al citoplasma se incorporan una serie de sustancias, que van a ser transformadas o desintegradas para liberar energía.

De almacenamiento. En el citoplasma se almacenan ciertas sustancias de reserva.

Estructural. El citoplasma es el soporte que da forma a la célula y es la base de sus movimientos.

Los organelos celulares

Son pequeñas estructuras intracelulares, delimitadas por una o dos membranas. Cada una de ellas realiza una determinada función, permitiendo la vida de la célula. Por la función que cumple cada organelo, la gran mayoría se encuentra en todas las células, a excepción de algunos, que solo están presentes en ciertas células de determinados organismos

– Las mitocondrias

Son organelos citoplasmáticos membranosos característicos de las células eucarióticas. Se habrían originado, al igual que los cloroplastos, en momentos tempranos de la evolución a partir de la endocitosis de bacterias fotosintéticas (teoría endosimbiótica). Las mitocondrias poseen una gran importancia, ya que en ellas se realizan una serie de reacciones de óxido-reducción que permiten el
sustento energético de la célula. De esta manera, y de forma general, células que realizan un mayor gasto de energía poseerán una mayor cantidad de mitocondrias. Su dimension varia entre 1 a 10 u.
Se las pueden observar in vivo mediante técnicas de coloracion vital :verde jano(se tiñen de color rojo) ;o con hematoxilina ferrica.-
Pudiendo las mismas adoptar distintas formas :
• Granular
• Bastoniforme
• Filamentosas

En la actualidad algunos investigadores considerando que las mitocondrias :

• Son autorreproducibles y semi autonomas
• Constan de información genética propia y un equipo de síntesis proteicas con ADN propio mitocondrial(circular enrollado y retorcido,mas rico en guanina y timina que el ADN nuclear)
• Que su ADN y sus ribosomas son mas parecidos a los de los organismos procariotes . (5)

– Cloroplastos: son organelos que se encuentran sólo en células que están formando a las plantas y algas verdes. Son más grandes que las mitocondrias y están rodeados por dos membranas una externa y otra interna.

Poseen su propio material genético llamado DNA plastidial, y en su interior se encuentra la clorofila (pigmento verde) y otros pigmentos. Los cloroplastos son los organelos fundamentales en los organismos autótrofos, es decir, aquellos capaces de fabricar su propio alimento.

En ellos ocurre la fotosíntesis. Para que esta se realice, se requiere de CO2, agua y energía solar, sustancias con las cuales la planta fabrica glucosa. Esta molécula le sirve de alimento al vegetal y a otros seres vivos.

Así se forma, también, el oxígeno que pasa hacia la atmósfera.

– Los Ribosomas.

Los ribosomas son estructuras globulares, carentes de membrana. Están formados químicamente por varias proteínas asociadas a ARN ribosomico procedente del nucléolo. Pueden encontrarse libres en el citoplasma o adheridos a las membranas del retículo endoplasmático. Unas proteínas (riboforinas) sirven de nexo entre ambas estructuras.

Su estructura es sencilla: dos subunidades (una mayor o otra menor) de diferente coeficiente de sedimentación.

Su función consiste únicamente en ser el orgánulo lector del ARN mensajero, con órdenes de ensamblar los aminoácidos que formarán la proteína. Son orgánulos sintetizadores de proteínas. (6)

Retículo Endoplasmático.

El retículo endoplasmático es un sistema membranoso cuya estructura consiste en una red de sáculos aplanados o cisternas, sáculos globosos o vesículas y túbulos sinuosos que se extienden por todo el citoplasma y comunican con la membrana nuclear externa. Dentro de esos sacos aplanados existe un espacio llamado lúmen que almacena las sustancias. Existen dos clases de retículo endoplasmático: R.E. rugoso (con ribosomas adheridos) y R.E. liso (libres de ribosomas asociados).

Su función primordial es la síntesis de proteínas, la síntesis de lípidos constituyentes de membrana y la participación en procesos de detoxificación de la célula.

**

Aparato de Golgi.

El aparato de Golgi forma parte del sistema membranoso celular. Está formado por una estructura de sacos aplanados o cisternas (dictiosoma) acompañados de vesículas de secreción. Se sitúa próximo al núcleo y en células animales rodeando al centríolo. Las cisternas poseen una cara cis y otra trans, con orientaciones diferentes. La cara cis se orienta hacia el RER y la trans hacia la membrana citoplasmática. Las conexiones entre cisternas se realizan por vesículas de transición.

Las funciones del Ap. De Golgi son diversas: desempeña un papel organizador dentro de la célula, participa en el transporte, maduración, clasificación y distribución de proteínas, termina la glucosilación de lípidos y proteínas y sintetiza mucopolisacáridos de la matriz extracelular de células animales y sustancias como pectina, celulosa y hemicelulosa que forman la pared de las vegetales.

– Lisosomas.

Los lisosomas son vesículas procedentes del Ap. De Golgi que contienen enzimas digestivas como hidrolasas ácidas, se encargan de la digestión celular. Los lisosomas utilizan sus enzimas para reciclar los diferentes orgánulos de la célula, englobándolos, digiriéndolos y liberando sus componentes en el citosol. De esta forma los orgánulos de la célula se están continuamente reponiendo. El proceso de digestión de los orgánulos se llama autofagia. Por ejemplo, las células hepáticas se reconstituyen por completo una vez cada dos semanas. (7)

Vacuolas e inclusiones.

Las vacuolas son vesículas constituidas por una membrana plasmática en cuyo interior existe fundamentalmente agua. Cuando además de agua existen otras sustancias de forma predominante se llaman inclusiones.

Se forman a partir del retículo endoplasmático, del aparato de Golgi o de invaginaciones de la membrana plasmática. En animales suelen ser pequeñas y se llaman vesículas. En vegetales son muy grandes y se llaman tonoplastos que pueden llegar a formar hasta un 50-90% del volumen celular.

Sus funciones son: acumular agua aumentando el volumen de la célula sin aumentar el tamaño del citoplasma ni su salinidad; almacenar sustancias energéticas, tóxicas, venenos, sustancias de desecho, etc. Constituyen el medio de transporte de sustancias entre orgánulos del sistema endomembranoso. En células animales existen además vacuolas fagocíticas, pinnocíticas y pulsátiles.

Entre las inclusiones, las funciones más importantes son almacenar resinas o látex. (8)

Peroxisomas y glioxisomas.

Los peroxisomas son orgánulos similares a los lisosomas pero que contienen, en vez de hidrolasas, enzimas oxidasas como la peroxidasa y la catalasa. Su función es participar en reacciones metabólicas de oxidación como las de las mitocondrias; sibn embargo, en los peroxisomas la energía resultante se disipa en forma de calor y no de energía de síntesis de ATP.

Los glioxisomas son una clase de peroxisomas que sólo existen en células vegetales. Poseen enzimas del ciclo del ácido glioxílico que es una variante del ciclo de Krebs de las mitocondrias que permite sintetizar azúcares a partir de grasas. Es indispensable en semillas en germinación.

 

Fuentes:

(1) http://www.ciencia-ahora.cl/Revista13/EstructuraMolecularMembranasCelulares.pdf

(2) http://es.wikipedia.org/wiki/Membrana_plasm%C3%A1tica

(3) http://www.profesorenlinea.cl/Ciencias/Celula.htm

(4) http://www.alipso.com/monografias/nucleo_celular/

(5) http://apuntes.infonotas.com/pages/biologia/la-celula/el-nucleo.php

(6) http://recursostic.educacion.es/ciencias/biosfera/web/alumno/2bachillerato/La_celula/contenidos9.htm#ribosomas

(7) http://es.wikipedia.org/wiki/Lisosoma

(8) http://recursostic.educacion.es/ciencias/biosfera/web/alumno/2bachillerato/La_celula/contenidos11.htm#vacuolas

 

La célula: unidad de la vida

Estándar

Todo organismo por simple que sea está compuesta por células, por eso al estudiar a cualquier organismo tenemos necesidad de adentrarnos un poco en la célula, la forma como funciona, que organelos hacen parte de ella, y como es que se encadena formando tejidos,órganos y sistemas. De igual forma es muy interesante conocer la manera en que las células se reproducen, así que amigos los invito a que hagamos un recorrido por este mundo en pequeño y que sin embargo son ellas los ladrillos que forman a cualquier organismo. así que empecemos por definirla y conocer la manera en que se hizo este descubrimiento.

La célula: definición e historia del descubrimiento

“Célula, unidad mínima de un organismo capaz de actuar de manera autónoma.  Una célula (del latín cellula, diminutivo de cellam, celda, cuarto pequeño) es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.[1] De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano (1)

Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos. La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen. Características generales de las células Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa constituyen un ejemplo espectacular). Casi todas las células vegetales tienen entre 20 y 30 µm de longitud, forma poligonal y pared celular rígida.” (2)

Cómo se consiguió conocer a la célula: desarrollo histórico del concepto

Las primeras aproximaciones al estudio de la célula surgieron en el siglo XVII;[6] tras el desarrollo a finales del siglo XVI de los primeros microscopios.[7] Éstos permitieron realizar numerosas observaciones, que condujeron en apenas doscientos años a un conocimiento morfológico relativamente aceptable. A continuación se enumera una breve cronología de tales descubrimientos:

1664 Robert Hook (físico, meteorólogo, biólogo, ingeniero, arquitecto) publicó un libro llamado Micrographia, donde describe la primera evidencia de la existencia de las células. Estudió el corcho y vio una disposición en forma de panal de abeja. A cada camarita la llamó celdilla o célula, pero él no tenía consciencia de que eso era una estructura similar a la que conocemos hoy en día como células. En realidad creía que esos espacios eran lugares por donde se moverían los nutrientes de las plantas. Aunque no intuyó que aquellas celdas eran la unidad funcional de los seres vivos, la denominación de célula ha permanecido para nombrar a lo que había dentro de esas camarillas y luego se aplicó también para descubrimientos en los animales. (3)

Hoy sabemos que lo que Hooke observaba eran las paredes celulares en tejido muerto y que, debido a esta razón, no contenían nada en su interior. Sin embargo, el propio Hooke hizo observaciones de células vivas, identificando un “jugo” en el interior de dichas celdas, que interpretó como parte del sistema de circulación de savia.

El descubrimiento de Hooke, que documentó sus observaciones con dibujos de gran precisión, no obtuvo en su momento mayores comentarios ni interés por parte de los naturalistas, aunque se seguía buscando la mínima estructura dotada de vida. Las observaciones del microscopista holandés Van Leeuwenhoek son todavía anteriores a las de Hooke e incluyen células aisladas vivas: espermatozoides, glóbulos rojos y hasta bacterias. Estas observaciones también fueron recibidas como una “curiosidad” por el resto de los naturalistas, como un objeto de admiración, pero carente de importancia para la reflexión científica. (4)

• 1830: Theodor Schwann estudió la célula animal; junto con Matthias Schleiden postularon que las células son las unidades elementales en la formación de las plantas y animales, y que son la base fundamental del proceso vital.
• 1831: Robert Brown describió el núcleo celular.
• 1839: Purkinje observó el citoplasma celular.
• 1850: Rudolf Virchow postuló que todas las células provienen de otras células.
• 1857: Kölliker identificó las mitocondrias.
• 1860: Pasteur realizó multitud de estudios sobre el metabolismo de levaduras y sobre la asepsia.
• 1880: August Weismann descubrió que las células actuales comparten similitud estructural y molecular con células de tiempos remotos.
• 1931: Ernst Ruska construyó el primer microscopio electrónico de transmisión en la Universidad de Berlín. Cuatro años más tarde, obtuvo un poder de resolución doble a la del microscopio óptico.
• 1981: Lynn Margulis publica su hipótesis sobre la endosimbiosis serial, que explica el origen de la célula eucariota. (5)

Teoría celular

La Teoría Celular, tal como se la considera hoy, puede resumirse en cuatro proposiciones:

1. En principio, todos los organismos están compuestos de células.

2. En las células tienen lugar las reacciones metabólicas de organismo.

3. Las células provienen tan solo de otras células preexistentes.

4. Las células contienen el material hereditario.

Si consideramos lo anterior, podemos decir que la célula es nuestra unidad estructural, ya que todos los seres vivos están formados por células; es la unidad de función, porque de ella depende nuestro funcionamiento como organismo y es la unidad de origen porque no se puede concebir a un organismo vivo si no esta presente al menos una célula.

Por sus aportaciones, Theodor Schwann y Mathias Schleiden son considerados los fundadores de la Teoría Celular Moderna.(6)

A pesar de que la teoría celular empezó a funcionar como un concepto unificador para la biología, todavía no dejaba de responder preguntas como: ¿De dónde surgio la primera célula? y, si los primeros sres vivos están compuestos de células. ¿cómo se originaron los primeros seres vivos?

Como respuestas a estas inquietudes se originaron la teoría de la generación espontánea y la de la evolución bioquimica.

La hipótesis de la generación espontánea  es  una teoría, donde menciona que por la materia inerte, es decir, la materia que no tiene vida alguna(lápiz,ropa sucia,etc…)surgía vida animal y vegetal, como su nombre lo indica surgía vida espontáneamente,en otras palabras, que surgía vida de cualquier lugar que no tuviera vida.
en la teoría de La generación espontánea indicaba que surgían gusanos del fango, moscas de la carne podrida, organismos de los lugares húmedos, etc. Así, la idea de que la vida se estaba originando continuamente en la Tierra a partir de esos restos de materia orgánica.
sin embargo,había médicos-biólogos que estaban en contra y a favor de que existía la generación espontanea.para ello entre los siglos 17 y 18 se llevaron a cabo varios experimentos elaborados por los biólogos para cerciorarse de que hubiera o no hubiera vida espontáneamente, uno de los mas celebres fue el del Científico francés Louis Pasteur (1822-1895) en la cual se demostró la falsedad de esta teoría:  Para su experimento Pasteur utilizó dos matraces de cuello de cisne. Estos matraces tienen los cuellos muy alargados que se van haciendo cada vez más finos, terminando en una apertura pequeña, y tienen forma de s. En cada uno de ellos metió cantidades iguales de caldo de carne (o caldo nutritivo) y los hizo hervir para poder eliminar los posibles microorganismos presentes en el caldo. La forma de s era para que el aire pudiera entrar y sin embargo que los microorganismos se quedasen en la parte más baja del tubo.
Pasado un tiempo observó que ninguno de los caldos presentaba seña alguna de la presencia de algún microorganismo y cortó el tubo de uno solo de los matraces. El matraz abierto tardó poco en descomponerse, mientras que el cerrado permaneció en su estado inicial. Pasteur demostró así que los microorganismos tampoco provenían de la generación espontánea.
Gracias a Pasteur, la idea de la generación espontánea fue desterrada del pensamiento científico y a partir de entonces se aceptó de forma general el principio que decía que todo ser vivo procede de otro ser vivo.

En la teoría de la evolución bioquímica se consideraba que que al principio no existían plantas, animales ni otro ser vivo sobre la tierra y que las condiciones reinantes en el planeta  eran muy hostiles para la vida, los volcanes y toda la lava que se encontraba en la superficie del planeta se encontraba en proceso de enfriamiento  y desprendía enormes cantidades de gases tóxicos a la atmosfera lo que no la hacia apta para la vida. Estos gases al enfriarse caían nuevamente hacia tierra en forma de lluvias torrenciales y con el paso del tiempo empezaron a formar los océanos . Además de los océanos, la atmosfera, las rocas también se encontraban los cuatro elementos esenciales para la vida: el oxigeno (O), el Hidrogeno (H), el Carbono (C), y el Nitrógeno (N), estos elementos empezaron a reaccionar unos con otros, y gracias a la energía aportada por los rayos y tormentas eléctricas y con el paso del tiempo se creo una sopa primordial que contenía las moléculas de la vida: los carbohidratos, las proteínas, los lípidos, y los ácidos nucleicos, a partir de estas moléculas la síntesis de la primera célula fue solo cuestión de tiempo y un poco de azar.

Las teorías de Oparín y Haldane fueron comprobadas por Urey y Miller que colocaron en un recipiente una mezcla de agua, amoníaco, metano e hidrógeno y la sometieron a descargas eléctricas de alto voltaje o a las radiaciones ultravioletas al mismo tiempo que hacían circular vapor de agua. Luego de un tiempo observaron en el agua la formación de aminoácidos y azúcares sencillos; se demostró de esta manera la formación de materia orgánica a partir de la inorgánica.
EXPERIMENTO: Miller construyó un aparato de vidrio constituido esencialmente por un matraz de balón al que introdujo los gases que presumiblemente existieron en esa atmósfera primitiva; este matraz estaba conectado a través de dos tubos de vidrio, uno a la parte superior y otro a la inferior de otro, parcialmente lleno de agua, con llaves que permitían tomar muestras de agua. Una vez introducidos el NH3, H2O, CH4 y H2 al primer matraz, produjo descargas eléctricas en esta atmósfera para simular las condiciones iniciales de 60.000 voltios. Al cabo de una semana, examinó el contenido líquido, que inicialmente era incoloro, ahora se mostraba rojizo. Encontró, que éste contenía varios compuestos orgánicos que no estaban presentes al principio. Al examinar estos compuestos orgánicos, determinó que eran similares a los aminoácidos, constituyente fundamental de la proteína, compuestos sin los cuales no es posible la vida. Este experimento dio como resultado la formación de una serie de moléculas orgánicas, entre la que destacan ácido acético, ADP-Glucosa, y los aminoácidos glicina, alanina, ácido glutámico y ácido aspártico, usados por las células como los pilares básicos para sintetizar sus proteínas.

   

Evaluacion

A continuación encontrarás dos ejercicios que van ayudarte a reconocer la asimilación de los anteriores conceptos, te invitamos a que realices los ejercicios_

1. Crucigrama: http://dl.dropbox.com/u/20611524/crucigrama-la%20celula.htm

2. Completa los espacios: http://dl.dropbox.com/u/20611524/complete%20celula.htm

Fuentes:

(1) http://es.wikipedia.org/wiki/C%C3%A9lula

(2) http://biosybios.tripod.com/celula.html

(3) http://webs.uvigo.es/mmegias/5-celulas/1-descubrimiento.php

(4) http://www.alipso.com/monografias/origenes_biologia_celymolec/

(5) http://construyetuconocimientovoca5.blogspot.com/2010/04/descubrimiento-de-la-celula.html

(6) http://www.profesorenlinea.cl/Ciencias/CelularTeoria.htm